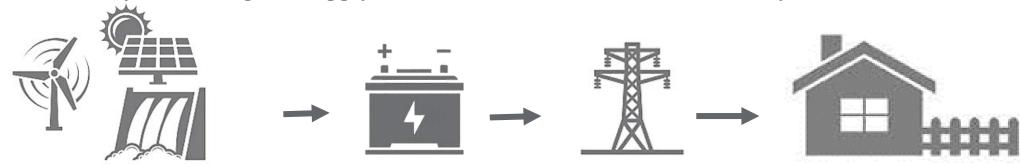

Agenda:

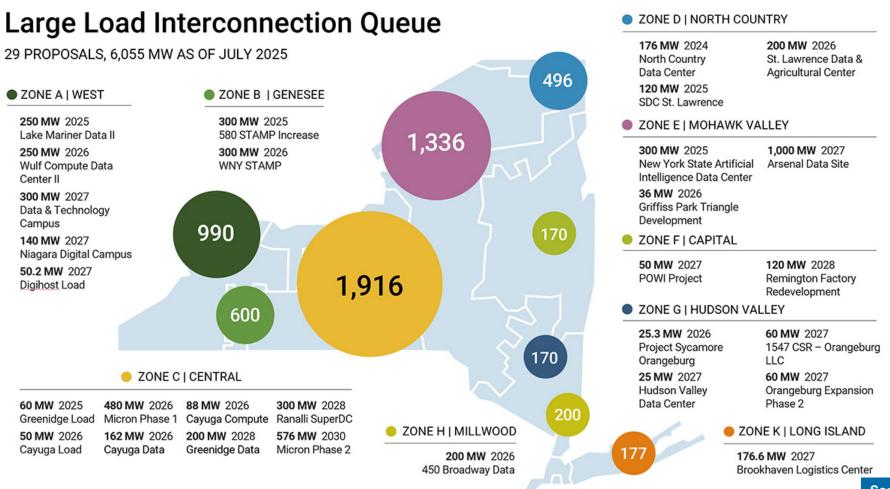
- Intro to BESS: Drivers & Technologies
- Siting & Permitting BESS
- Fire Safety & the 2025 NYS Fire Code
- Resources for Communities
- Q&A

Introduction

Jennifer Manierre Director, Clean Energy Siting NYSERDA

Eva Hoskin
Clean Energy Advisor,
Climate Action Associates LLC




Why are we talking about batteries?

Energy storage acts like a giant battery for the electric grid. It can store extra electricity on sunny days when solar panels are producing more power than we need. Then, it releases that stored energy when we need it most, such as during the evening or on hot days when everyone's using air conditioning.

This helps the grid in two significant ways:

- Making it more resilient: If something goes wrong, like a storm knocking out power lines, energy storage can step in to supply electricity, keeping lights on and essential services running until the problem is fixed.
- Saving money: Storage helps avoid the need to turn on expensive power plants only used during peak demand times. By smoothing out supply and demand, it reduces costs for everyone.

Numerous Applications for BESS: Examples by Sector

Increase renewable integration

Balance electricity supply and demand

Keep critical equipment online during power disruptions

Reliable backup power during severe weather and other blackouts

Reduce dependence on fossil-fuel peaker plants

Improve power quality and reliability

Reduce utility bills and generate revenue

Reduce utility bills and generate revenue

Reduce operating expenses

Avoid costly system upgrades

Residential

Commercial

Utility

Behind-the-meter "Customer-side"

Front-of-the-meter "Utility-side"

BESS Technology: BESS can vary in their electrochemical composition

Lithium Ion (currently dominates; mixture of NMC and LFP chemistries)

- Iron-Air
- Sodium-Ion
- Flow Batteries

What's Driving BESS Innovation?

- Safety
- Duration
- Energy Density / Size
- Materials (scarcity, recoverability, circularity)

Battery Management System (BMS)

- Monitors each individual cell within the system
- Capable of monitoring thousands of data points per second
- Will alarm if there are potential is sues
- If required, can isolate affected cells or modules from the total system and activate fire protection systems, preventing further failure
- Numerous safety features: cell balancing/monitoring, thermal management, charge/discharge protection, fault diagnosis/reporting

Permitting Authority for BESS & Renewables

Technology Type		State Approval (ORES)	Local Approval (SEQR/local regulations)	Combination of State & Local Approvals (PSL §68, SEQR/local regulations)
Renewable Generator (e.g. solar, wind)		≥ 25 MW	< 25 MW	N/A
Battery Energy Storage System (BESS)	Co-located w/ Renewable Generator	All sizes if co-located w/ ≥ 25 MW renewable generator	All sizes if co-located w/ < 25 MW renewable generator	$N\!/\!A$
(2255)	Standalone System	N/A	≤ 80 MW	> 80 MW

Key Takeaway: Municipal permitting authority over all standalone BESS!

Residential BESS

5 kW / 14 kWh installation: <u>Tesla Powerwall 2</u> (5 kW / 14 kWh/unit); installed in utility space

9.8 kW / 20 kWh installation: SonnenCore+, (4.8 kW / 10 kWh/unit); installed in garage

Smaller Commercial BESS

50 kW / 250 kWh installation: Commercial project at NYPA HQ in Westchester County.

375 kW/940 kWh installation: Commercial project at office park in Westchester County.

Larger Commercial BESS

490 kW/1,856 kWh installation: Co-located with rooftop community solar; sited in parking lot.

750 kW / 2,500 kWh installation: Project at large commercial building (sports arena) in NYC.

Utility-Scale BESS

4.8 MW / 16.4 MWh installation: Project at a commercial shopping center in NYC.

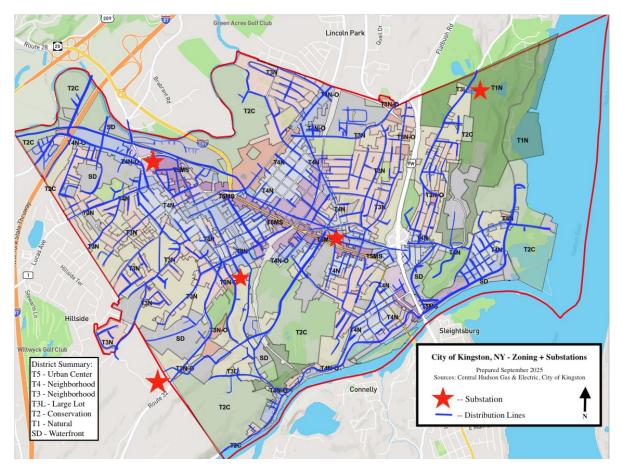
20 MW / 45.6 MWh installation: Sited on underutilized land owned by landscaping business in Erie County.

Well-considered, responsible land-use regulations:

Priorities:

- Promote forward-thinking, responsible planning
- Be pragmatic about siting considerations, incl. locations of grid infrastructure
- Anticipate and understand the needs + use cases for the technology
- Enable community members and businesses to utilize the technology while ensuring safety
- Consider all phases of a project's life, incl. construction, ongoing operations, and decommissioning

Well-considered, responsible land-use regulations:


Recommendations:

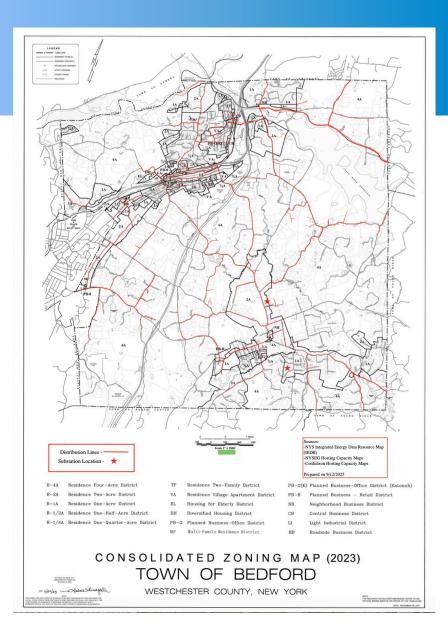
- Take advantage of existing tools, resources, and support:
 - BESS Guidebook: Model Law, Model Permit, Electrical Checklist, etc.
 - NYSERDA workshops and technical assistance
 - Clean Energy Advisor support
- Prioritize reputable information sources

BESS in Your Community - Mapping Assessment

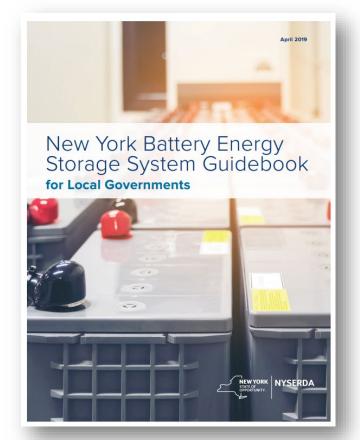
Leverage data resources to understand and plan around energy infrastructure, zoning, proximal land uses, etc.

Example: City of Kingston

BESS in Your Community – Mapping Assessment


Benefits:

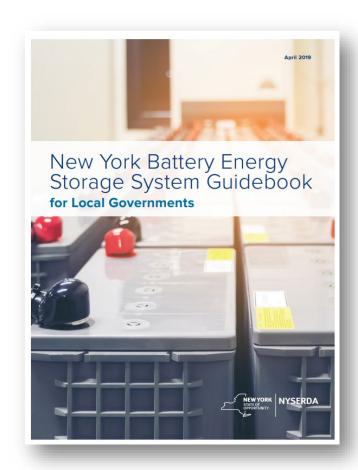
- Visualize, plan around real conditions in your area by overlaying relevant data maps
- Understand tools/evaluations used by developers
- Pragmatically balance technical feasibility, local priorities


Limitations:

- Hosting capacity changes over time
- Information asymmetry between distribution vs. transmission infrastructure

Example: Town of Bedford

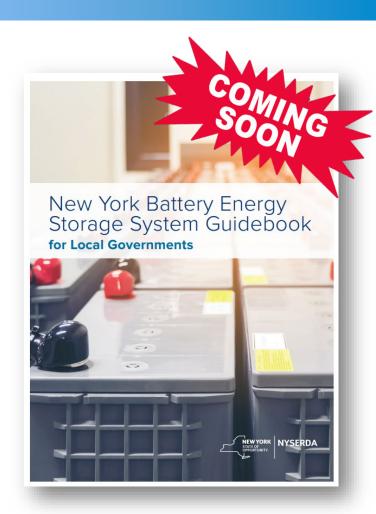
BESS Guidebook for Local Governments



Chapter 1 Battery Energy Storage Model Law Chapter 2 **Battery Energy Storage Model Permit** Chapter 3 Battery Energy Storage Inspection Checklist Chapter 4 2020 New York State Uniform Code Siting Battery Energy Storage Systems to Chapter 5

the 2020 Fire Code of New York State

NYSERDA Model Law helps municipalities to:


- Incorporate BESS planning/regulations into existing zoning laws
- Customize the template ordinance to address local priorities and conditions
- Responsibly regulate BESS across all system sizes
- Adequately address key aspects of project development, operations, and decommissioning
- Ensure alignment with the NYS Uniform Code, which includes nation-leading requirements for safe BESS testing, planning, installation, and operations.

NOTE: BESS Model Law is <u>currently under revision</u> – updated version coming soon!

Anticipated updates include:

- Expanded Tier framework to better and more efficiently regulate different sizes of BESS
- Changes to avoid duplication/conflict with forthcoming 2025 NYS Fire Code requirements
- Expanded instructions + commentary sections for communities looking to adopt or update a BESS law
- Updated accompanying Guidebook chapters, incl. excerpts of relevant 2025 NYS Fire Code requirements

Moving Beyond a Moratorium:

- Grants time for municipal preparation and action
- Key factors when considering/navigating a moratorium:
 - 1) Reasonableness
 - 2) Impacts on landowners, residents, businesses
 - 3) Timeline and scope of moratorium
 - 4) Legal standing

Primary Land Use /
Planning Considerations for
All Clean Energy
Technologies

- Infrastructure / grid interconnection
- Appropriate location/zoning
- Bulk/area standards
- Environmental impacts

- Visual impacts
- Agricultural impacts
- Decommissioning
- Taxation

Primary Land Use /
Planning Considerations for
BESS

- Infrastructure / grid interconnection
- Appropriate location/zoning
- Bulk/area standards
- Environmental impacts

- Visual impacts
- Agricultural impacts
- Decommissioning
- Taxation
- Fire safety
- <u>Incident management</u> <u>training</u>

BESS Model Law Contents

Section 1: Authority

Section 2: Statement of Purpose

Section 3: <u>Definitions</u>

Section 4: Applicability

Section 5: General Requirements

Section 6: <u>Permitting Requirements for Tier 1 Battery Energy Storage Systems</u>

Section 7: Permitting Requirements for Tier 2 Battery Energy Storage Systems

Section 8: Safety

Section 9: Permit Time Frame and Abandonment

Section 10: Enforcement

Section 11: Severability

Section 3: Definitions

System Sizes

Tier 1

Tier 1 Battery Energy Storage Systems have an aggregate energy capacity **less than or equal to 600kWh** and, if in a room or enclosed area, consist of only a single energy storage system technology.

Residential – 20 kWh

Small Commercial – 250 kWh

Section 3: Definitions

System Sizes

Tier 2

Tier 2 Battery Energy Storage Systems have an aggregate energy capacity **greater than 600kWh** or are comprised of more than one storage battery technology in a room or enclosed area.

Commercial - 940 kWh

Large-Commercial – 2.5 MWh

Utility-Scale – 45.6 MWh

Section 6-7: Permitting Requirements

Section 6: Tier 1 Battery Energy Storage Systems

- BESS Permit
- Inspection Checklist
- Applicable fire code

Section 7: Tier 2 Battery Energy Storage Systems

- Special Use Permit
- Site Plan Review
- Applicable fire code

Recommendation:

Tier 1 BESS shall be permitted in all zoning districts, subject to the Uniform Code and "BESS Permit," and exempt from site plan review.

In Action:

Village of Black River, Jefferson County

Section 175-102: Permitting Requirements for Tier 1 Battery Energy Storage Systems

Tier 1 Battery Energy Storage Systems shall be permitted in all zoning districts, subject to the Uniform Code and Building Permit, and exempt from site plan review.

Section 175-103: Permitting Requirements for Tier 2 Battery Energy Storage Systems

BESS Model Permit

For Permitting Tier 1

PROPERTY OWNER						
Property Owner's First Name	Last Name	Title				
Property Address						
City		State	Zip			
Section	Block	Lot Number				
EXISTING USE						
Residential Commerci	le					
PROVIDE THE TOTAL SYSTEM CAPACITY RATING						
Total System Capacity Rating:kWh Power Rating:kW (Select One) AC or DC						
SELECT SYSTEM CONFIGURATION						
□ AC Coupled □ DC Coupled □ Standalone						
SELECT BATTERY TYPE						
Lithium-ion, all types						
SELECT INSTALLATION TYPE						
□ Indoor □ Outdoor □ Attached/Open Garage □ Rooftop □ Dedicated Use Building						
BATTERY ENERGY STORAGE SY	STEM INSTALLATION CONTRACTOR					
Contractor Business Name						
Contractor Business Address	City	State	Zip			
Contractor Contact Name	entractor Contact Name Phone Number					
ontractor License Number(s) Contractor Email						

EXISTING USE					
☐ Residential ☐ Commercial					
PROVIDE THE TOTAL SYSTEM CAPACITY RATING					
PROVIDE THE TOTAL STRICK CAPACITY NATING					
Total System Capacity Rating: kWh Power Rating: kW (Select One) ☐ AC or ☐ DC					
SELECT SYSTEM CONFIGURATION					
□ AC Coupled □ DC Coupled □ Standalone					
SELECT BATTERY TYPE					
☐ Lithium-ion, all types ☐ Lead-acid, all types ☐ Nickel-cadmium (Ni-Cd) ☐ Flow batteries ☐ Other:					
SELECT INSTALLATION TYPE					
☐ Indoor ☐ Outdoor ☐ Attached/Detached/Open Garage ☐ Rooftop ☐ Dedicated Use Building					

Recommendation:

Tier 2 BESS are permitted through the issuance of a [special use permit] within the [XYZ, XYZ, XYZ] zoning districts, and shall be subject to the Uniform Code and site plan application requirements set forth in this section.

In Action:

Town of Madrid, St. Lawrence County

7. Permitting Requirements for Tier 2 Battery Energy Storage Systems

Tier 2 Battery Energy Storage Systems are permitted through the issuance of a special use permit within the RA, CI, OS, LC, PD zoning districts, and shall be subject to the Uniform Code and the site plan application requirements set forth in this Section.

Process for Approval

- Choose which zoning district(s) to permit systems.
- Applications shall be reviewed for completeness within 10 business days.
- Applications shall be subject to a public hearing and a notice shall be published in the official newspapers 5 days in advance.
- Referred to the [County Planning Department] pursuant to General Municipal Law § 239-m as required.
- Upon closing the public hearing, the reviewing board shall have 62 days to take action on the application. The 62-day period may be extended.

Requirements for Approval

- B. Utility Lines and Electrical Circuitry
- C. Signage
- D. Lighting
- E. Vegetation and Tree-cutting
- F. Noise
- G. Decommissioning
- H. Site Plan Application
- I. Special Use Permit Standards
- J. Ownership Changes

G: Decommissioning

Decommissioning Plan

- i. Anticipated life of system;
- ii. Estimated decommissioning costs;
- iii. How estimate was determined;
- iv. Method of ensuring available funds for decommissioning and restoration;
- v. Method to keep decommissioning cost current; and
- vi. Manner in which system will be decommissioned and Site restored.

Decommissioning Fund

Applicant to continuously maintain a fund or bond payable to the city/town/village for removal of the system for the life of the facility

- Form and amount approved/determined by the city/town/village
- May consist of a letter of credit from a State of New York licensed-financial institution
- All costs of financial security borne by the applicant

G: Decommissioning

In Action:

Town of Conquest, Cayuga County

Key Topics:

- Fund value
- Method for ensuring adequacy of funds over time

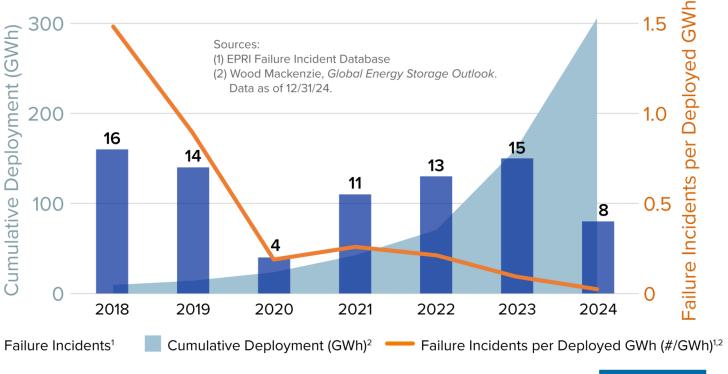
TOWN OF CONQUEST LAND USE REGULATIONS LAW

- 10. A Decommissioning Plan signed by the owner and/or operator of the Solar Energy System shall be submitted by the applicant. The decommissioning plan shall address the following:
 - The time required to decommission and remove the Solar Energy System and any ancillary structures.
 - The time required to repair any damage caused to the property by the installation and removal of the Solar Energy System.
 - c. The cost of decommissioning and removing the Solar Energy System, as well as all necessary site remediation or restoration.
 - d. The provision of a decommissioning security which shall adhere to the following requirements:
 - i. The deposit, executions, or filing with the Town Clerk of cash, bond, or other form of security reasonably acceptable to the Town attorney and/or engineer, shall be in an amount sufficient to ensure the good faith performance of the terms and conditions of the permit issued pursuant hereto and to provide for the removal and restorations of the site subsequent to removal.
 - ii. The amount of the bond or security shall be 115% of the cost of removal and site restoration for the Tier 3 Solar Energy System and shall be revisited every 5 years and updated as needed to reflect any changes (due to inflation or other cost changes). The decommissioning amount shall be reduced by the amount of the estimated salvage value of the Solar Energy System.
 - iii. In the event of default upon performance of such conditions, after proper notice and expiration of any cure periods, the cash deposit, bond, or security shall be forfeited to the Town, which shall be entitled to maintain an action thereon. The cash deposit, bond, or security shall remain in full force and effect until restoration of the property as set forth in the decommissioning plan is completed.

Section 7: Tier 2 Permitting Requirements

H: Site Plan Application

- 1. Property lines and physical features of site
- Proposed changes to landscape, grading, vegetation, lighting, etc.
- 3. A one or three-line electrical diagram showing layout, equipment components and associated National Electric Code compliant mechanisms
- 4. Equipment specification sheet for the proposed battery energy storage system components
- 5. General information including name, address, and contact info of system installer and owner/operator


- 6. Name, address, phone number and signature of the project applicant and owners, demonstrating their consent to the use of the property for the system
- 7. Zoning district designation
- 8. Commissioning plan
- 9. Fire safety compliance plan
- 10. Operations and maintenance plan
- 11. Erosion and sediment control and storm water management plans
- 12. Signed and sealed engineering documents by a NYS Licensed Professional Engineer, or Registered Architect
- 13. Emergency operations plan

BESS failure incident rates continue to decline year-over-year; fire safety and code compliance remain critical!

Global Grid-Scale Storage Deployment and Failure Statistics

NYS Inter-Agency Fire Safety Working Group

In July 2023, in response to fires at three BESS sites, Governor Hochul convened an Inter-Agency Fire Safety Working Group (Working Group).

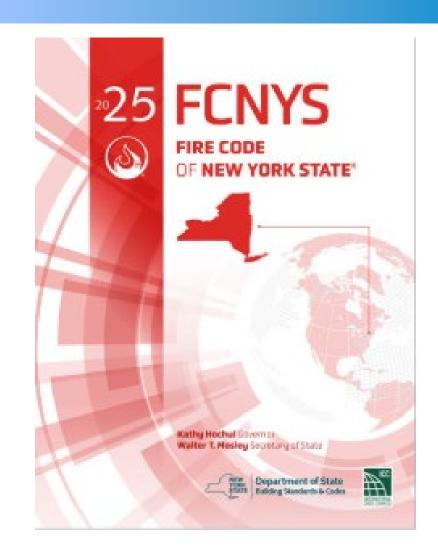
Agency Participants

- Division of Homeland Security Emergency Services (DHSES)
- Office of Fire Prevention and Control (OFPC)
- New York State Energy Research and Development Authority (NYSERDA)
- Department of Environmental Conservation (DEC)
- Department of Public Service (DPS)
- Department of State (DOS)

Working Group Partners

Highly specialized Subject Matter Experts (SME)/fire protection engineering firms, national labs, and New York Power Authority

NYS Inter-Agency Fire Safety Working Group


- 1. Release preliminary Air, Soil, and Water Data Findings Report. No reported injuries, no detected harmful levels of contaminants linked to the fires. Issued December 2023
- 2. Issuance of final Fire Code Recommendations for NYS Uniform Code. Resulted in 11 recommendations for large, grid-scale systems. Draft code language to reflect the recommendations now incorporated into the Notice of Proposed Rule Making. Issued March 2025
- ✓ 3. Field Inspections and Quality Assurance inspected 57 in-service projects with SME collaboration resulting in an enhanced NYSERDA inspection process. Completed Dec 2024
 - Through lessons learned, incorporated peer review into NYSERDA program
- 4. State-wide Webinar for local communities. Q2 2025
 - 5. Accessing and examining Root Cause Analysis.
 - 6. Compiling all preliminary working group findings, data, and other relevant materials and send to National Labs to review.

2025 NYS Uniform Fire Prevention & Building Code

Adopted: July 26, 2025

Effective: January 1, 2026

- Includes updates to Fire Code, Residential Code, and others.
- Codifies recommended modifications + additions from the Fire Safety Working Group

2025 NYS Fire Code Updates & Additions

	2020 Fire Code	2025 Fire Code
1) Peer Review	At the discretion of the AHJ	Require*
2) Hazard Support Personnel	At the discretion of the AHJ	Require/Enhance
3) Signage	Required	Enhance
4) Emergency Response Plans, Regular Fire Department Training	Not required	Require*
5) Exemptions for BESS Cabinets	Ambiguity in code	Clarify

^{*}NYSERDA incorporating into incentive program rules

Key Fire Code Takeaways for Local First Responders:

- Requires application peer reviews, to ensure subject matter experts are involved in all approvals
- Requires project-specific Emergency Response Plans to be developed in conjunction with local fire department
- Requires project owners to provide annual on-site trainings,
 Plan reviews
- Requires project owner to furnish Hazard Support Personnel to support and collaborate with local first responders

Working Group Resources

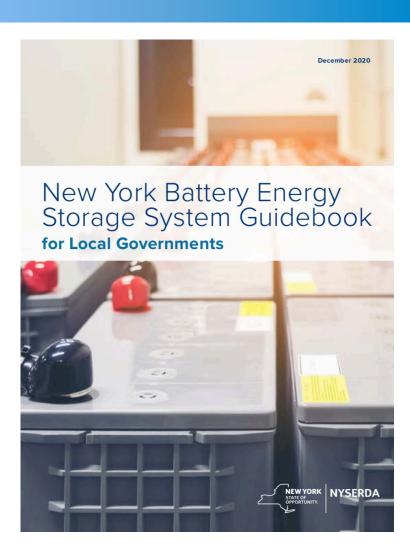
- Inter-Agency Fire Safety Working Group Site (created December 2023)
- <u>Data Collection Press Release</u> (December 2023)
- <u>Code Recommendations Document</u> (July 2024)

OFPC Resources:

- BESS Fire Service Response Guide
- <u>Lithium-ion Battery Awareness Course</u> (DHSES Learning Management)

Clean Energy Siting Resources:

- Energy Storage Guidebook for Local Governments
- Energy Storage Trainings for Local Governments


Resources for Communities

NYSERDA Clean Energy Siting Team:

- BESS Guidebook for Local Governments
- Education & training opportunities (incl. municipal meetings, Land Use Leadership Alliance [LULA] programs, etc.)
- 1:1 Technical assistance and local law support
- Access to Contractor Pool support

NOTE: Upcoming Mid-Hudson LULA in Montgomery, NY on November 10-12; Capital Region coming soon!

Reach out to Eva for more info or to register – limited spots available for Mid-Hudson

Resources for Communities

Clean Energy Advisors:

Territory-based Advisors are available to support municipalities with:

- Clean energy mapping & zoning exercises
- Support on drafting or updating local laws, community plans
- Informational presentations and trainings for municipal boards/staff
- Other 1:1 technical assistance as needed

